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1. For the following functions, determine the nature of the singularity at z = z0 (i.e. regular point,
pole or essential singularity), compute the residue, calculate the radius of convergence of the
Laurent series.

(a) f(z) = z2+3z+2
z+1 , z0 = −1,

(b) f(z) = (z+1)
1
3

z
, z0 = 0,

(c) f(z) = e
z2+1
z−i , z0 = i,

(d) f(z) = z−7+1
1+z

, z0 = 0.

2. Let γ be a simple, closed curve in C which is counterclockwise oriented. What are the possible
values of the following integrals, depending on the shape of γ?

(a)
�

γ
1

z(z+2) dz,

(b)
�

γ
e

1
z2 dz,

(c)
�

γ
eiz

z4+1 dz,

(d)
�

γ
sin(z)

z
.

3. Let γ the circle of radius 2 centered at the origin, parametrized counter-clockwise. What is the
value of the integral �

γ

tan(z) dz,

where, as usual, tan(z) = sin(z)
cos(z) .

4. Let U ⊆ C be an open set and p, q : U → C be holomorphic functions and consider the function
f(z) = p(z)

q(z) defined at the points where q(z) ̸= 0. Let also z0 be a point in U such that q(z0) = 0
(i.e. a singularity of f).

(a) Assume that p(z0) ̸= 0 and that q vanishes to first order at z0, i.e. q(z0) = 0 but q′(z0) ̸= 0.

Show that Resz0(f) = p(z0)
q′(z0)

.

(b) Assume that p vanishes to first order at z0 and that q vanishes to second order at z0,

i.e. q(z0) = q′(z0) = 0 but q′′(z0) ̸= 0. Show that Resz0(f) = 2p′(z0)
q′′(z0)

.
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5. Compute the following integral:
� 2π

0

cos2(θ)
13 − 5 cos(2θ) dθ.

Hint: Use the residue theorem, by recasting the above as a complex integral over the unit
circle. For z = eiθ, you might need to use the identity

cos(θ) = eiθ + e−iθ

2 = 1
2

(
z + 1

z

)
(and similarly for cos(2θ)).
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Solutions
1. (a) f(z) = z2+3z+2

z+1 = (z+1)(z+2)
(z+1) = z + 2 This function has a removable singularity in z = −1

since on can extend it by continuity at this point. The residue is thus zero and the radius
of convergence is infinite (since there exists no other singularity).

(b) The singularity at z = 0 is directly given as a pole of order one, since

lim
z→0

zf(z) = lim
z→0

z · (1 + z)1/3

z
= 1 ̸= 0.

This limit is also the residue of f (it is the formula for the case of a simple pole). The
radius of convergence is R = 1 (since the domain of holomorphicity for (z+1) 1

3 = e
1
3 log(1+z)

is C \ (−∞, −1]).

(c) f(z) = e
z2+1
z−i = ez+i is also a function with a removable singularity in z = i. thus, the

residue is zero. The convergence radius is infinite since there is no other singularity.
(d) One can construct the Laurent series as:

f(z) = z−7 + 1
1 + z

= 1
z7 ·1 + z7

1 + z
= 1

z7 ·(1 + z)(1 − z + z2 − z3 + z4 − z5 + z6)
1 + z

= 1
z7 (1−z+z2−z3+z4−z5+z6) = 1

z7 − 1
z6 + 1

z5 − 1
z4 + 1

z3 − 1
z2 +1

z
.

The residue is the coefficient of z−1, so Res0(f) = 1.

2. In this exercise, we consider γ ⊂ C to be a simply connected, closed, and positively oriented
(i.e. counter-clockwise) curve. The different cases to be considered come down to count how
many poles are inside the domain defined by Int(γ), or if any pole belongs to the curve γ, in
which case the integral is not well defined.

(a) The poles of the function f(z) = 1
z(z+2) are z = 0 and z = −2. Both poles are of order 1,

thus we can easily compute their residue using the formula (for the case of simple poles)
Resz0(f) = limz→z0(z − z0)f(z): So Res(z = 0) = 1/2 and Res(z = −2) = −1/2. We can
distinguish the following cases:

�
γ

f(z) dz =


0 , {0, −2} ̸⊂ Int(γ) or {0, −2} ⊂ Int(γ)
1
2 , 0 ∈ Int(γ) and − 2 /∈ Int(γ)
−1

2 , −2 ∈ Int(γ) and 0 /∈ Int(γ)
ill defined , 0 ∈ γ or − 2 ∈ γ.

(b) The function f(z) = e1/z2 has an essential singularity at z = 0 since its Laurent series
exhibits singular part with an infinite number of terms:

e
1

z2 =
∞∑

n=0

z−2n

n! = 1 + 1
z2 + 1

2z4 + 1
6z6 + ...

The coefficient of the term z−1 is zero, so the residue at this point is also zero, by definition.
The integral is null, regardless of whether z = 0 is inside or outside Int(γ), and is ill defined
if 0 ∈ γ.
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(c) The function f(z) = eiz

z4+1 has four poles of degree one each on the unitary circle. These
poles are of the form zk = ei(π/4+kπ/2) with k ∈ {0, 1, 2, 3} such that one can decompose
z4 + 1 = (z − z0)(z − z1)(z − z2)(z − z3). We explicit the computation of the residue at
z = z0:

Res(z = z0) = lim
z→z0

(z − z0) · eiz

(z − z0)(z − z1)(z − z2)(z − z3)

= eiz0

(z0 − z1)(z0 − z2)(z0 − z3)
= e−

√
2/2ei

√
2/2

√
2 · (

√
2 + i

√
2) · i

√
2

= −e−
√

2/2ei
√

2/2

4

(
1 + i√

2

)
= −e−

√
2/2

4 e
i

(√
2

2 + π
4

)

Similarly, we compute the other residues at zk1,2,3:

• Res(z = z1) = e−
√

2/2

4 e
−i

(√
2

2 + π
4

)

• Res(z = z2) = e
√

2/2

4 e
i

(
−

√
2

2 + π
4

)

• Res(z = z3) = −e
√

2/2

4 e
i

(√
2

2 − π
4

)

The curve γ can enclose all the combinations of either of these four poles. We emphasize
here four kinds of these combinations (cf. Figure below):

• Sum of the two residues in the upper plane. We define θ =
√

2
2 + π

4 and A = e−
√

2/2

4 ;

Res(z0) + Res(z1) = −Aeiθ + Ae−iθ = −A
(
eiθ − e−iθ

)
= −A2i sin (θ)

• Sum of two residues on the diagonal. We define z̃ = eiπ/4 ;

Res(z1) + Res(z3) = e−
√

2/2

4 e
−i

(√
2

2 + π
4

)
− e

√
2/2

4 e
i

(√
2

2 − π
4

)

= −e−iπ/4

4

(
e

1+i√
2 − e

− 1+i√
2

)
= −e−iπ/4 sinh (eiπ/4)

2 = −sinh (z̃)
2z̃

• Sum of two residues with the same real component. We define ω̃ =
√

2
2 − i

π

4 ;

Res(z0) + Res(z3) = −e−1/
√

2

4 e
i

(
1√
2

+ π
4

)
− e1/

√
2

4 e
i

(
1√
2

− π
4

)

= −ei/
√

2

4

(
e

− 1√
2

+i π
4 + e

1√
2

−i π
4

)
= −ei/

√
2 cosh (ω̃)

2
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• Sum of all the residues
∑

i

Res(zki) = 0

Finally, the integral is ill defined if the curve if one or several of these poles belongs to the
curve γ.

R

i

z0z1

z2 z3

Res = −A2i sin (θ)

Res = − sinh (z̃)
2z̃

Res = −ei/
√

2 cosh (ω̃)
2

••••••

••• •••

Summation sketch of the residues.

(d) The function f(z) = sin (z)
z

has a removable singularity in z = 0, thus this integral is always
null, whether if z = 0 belongs or not to Int(γ), and even if it belongs to the curve γ itself.

3. As already stated in exercise 2(b) of the exercise sheet 4, the complex function cos (z) admits
the same zeros as its real counterpart given by zk = π/2 + kπ with k ∈ Q. With a circular
curve γ, centered at the origin and with a radius r = 2, there are two poles of tan (z) that are
contained inside Int(γ), namely z± = ±π/2. By developing the cosine Laurent series around
these points, one can compute the residues:

Res
(

z = π

2

)
= lim

z→π/2

(
z − π

2

)
· sin (z)

−
(
z − π

2

)
+ 1

6

(
z − π

2

)3
− O

((
z − π

2

)5
)

= lim
z→π/2

sin (z)

−1 + 1
6

(
z − π

2

)2
− O

((
z − π

2

)4
) = −1

Similarly, one finds Res
(
z = −π

2

)
= −1, such that

�
γ

tan (z) dz = −4πi.

4. In this exercise, we use the property that a function vanishes at the nth order to construct its
Taylor series up to the order n + 1.
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(a) Since p(z0) ̸= 0, we can write:

Resz0(f) = lim
z→z0

(z − z0) · p(z)

�
��* 0

q(z0) + q′(z0)(z − z0) + q′′(z0)
2 (z − z0)2 + . . .

= lim
z→z0

p(z)
q′(z0) + q′′(z0)

2 (z − z0) + . . .
= p(z0)

q′(z0)
̸= 0

which indicates a pole of order one since this limit is not null, and gives the value of the
residue by definition.

(b) Similarly, we write:

Resz0(f) = lim
z→z0

(z − z0) · �
���* 0

p(z0) + p′(z0)(z − z0) + p′′(z0)
2 (z − z0)2 + . . .

�
��* 0

q(z0) + �
���*

0
q′(z0) (z − z0) + q′′(z0)

2 (z − z0)2 + q′′′(z0)
3! (z − z0)3 + . . .

= lim
z→z0

p′(z0) + p′′(z0)
2 (z − z0) + . . .

q′′(z0)
2 + q′′′(z0)

3! (z − z0) + . . .
= 2p′(z0)

q′′(z0)
̸= 0

following the same reasoning as above, this is the value of the residue.

5. We use θ as the parameter that describes the unitary circle γ(θ) = eiθ with θ ∈ [0, 2π]. This
leads to the following change of variable: {z → eiθ ; dz → ieiθdθ}. Note that cos(θ) =
eiθ+e−iθ

2 = z+ 1
z

2 and cos(2θ) = e2iθ+e−2iθ

2 = z2+ 1
z2

2 We can then write:

2π�

0

cos2(θ)
13 − 5 cos(2θ) dθ =

2π�

0

cos2(θ)
13 − 5 cos(2θ)

1
ieiθ

ieiθdθ

=
�
γ

1
4

(
z + 1

z

)2

13 − 5
2

(
z2 + 1

z2

) (−i

z

)
dz =

�
γ

i(z4 + 2z2 + 1)
10z5 − 52z3 + 10z

dz

=
�
γ

i(z2 + 1)2

2z(z2 − 5)(5z2 − 1) dz

=
�
γ

i(z2 + 1)2

2z
(
z +

√
5
) (

z −
√

5
) (√

5z + 1
) (√

5z − 1
) dz

=
�
γ

f(z) dz
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There are 5 poles of order one, among which 3 belongs to the interior of γ: z ∈ {0, ±1/
√

5} as
one can see in the figure below. We compute their respective residue:

Res(z = 0) = lim
z→0

z · f(z) = i

10

Res(z = 1√
5

) = lim
z→ 1√

5

(z − 1√
5

) · f(z) = − 3i

40

Res(z = − 1√
5

) = lim
z→− 1√

5

(z + 1√
5

) · f(z) = − 3i

40

We conclude by the residue theorem:

2π�

0

cos2(θ)
13 − 5 cos(2θ) dθ =

�
γ

f(z) dz = 2πi
∑

i

Res(zi) = 2πi
(

i

10 − 2 · 3i

40

)
= π

10 .

As a consistency check, we expect an answer in R since the integral is initially a real integral
of a real function.

R

i

1√
5

−1√
5

√
5−

√
5

γ(θ)

× ×× ××

The poles of f(z) are indicated by the red crosses.
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